A Role for Repressive Histone Methylation in Cocaine-Induced Vulnerability to Stress

نویسندگان

  • Herbert E. Covington
  • Ian Maze
  • HaoSheng Sun
  • Howard M. Bomze
  • Kristine D. DeMaio
  • Emma Y. Wu
  • David M. Dietz
  • Mary Kay Lobo
  • Subroto Ghose
  • Ezekiel Mouzon
  • Rachael L. Neve
  • Carol A. Tamminga
  • Eric J. Nestler
چکیده

Substance abuse increases an individual's vulnerability to stress-related illnesses, which is presumably mediated by drug-induced neural adaptations that alter subsequent responses to stress. Here, we identify repressive histone methylation in nucleus accumbens (NAc), an important brain reward region, as a key mechanism linking cocaine exposure to increased stress vulnerability. Repeated cocaine administration prior to subchronic social defeat stress potentiated depressive-like behaviors in mice through decreased levels of histone H3 lysine 9 dimethylation in NAc. Cre-mediated reduction of the histone methyltransferase, G9a, in NAc promoted increased susceptibility to social stress, similar to that observed with repeated cocaine. Conversely, G9a overexpression in NAc after repeated cocaine protected mice from the consequences of subsequent stress. This resilience was mediated, in part, through repression of BDNF-TrkB-CREB signaling, which was induced after repeated cocaine or stress. Identifying such common regulatory mechanisms may aid in the development of new therapies for addiction and depression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-88: Comparing Epigenetic Profile of Oct4 Regulatory Region in Embryonal Carcinoma Cells under Retinoic Acid Induction

Background: Embryonal carcinoma (EC) cells derived from germ cell tumors are valuable tools for investigating differentiation and developmental biology processes in vitro. The advantage of the reproducible and rapid expansion of these cell lines provides a useful alternative to embryos for the study of mammalian cell differentiation. During early stages of cell differentiation, the rate of tran...

متن کامل

P-202: Reduced Expression of JMJD1A Histone Demethylase Gene in Testis Tissues of Infertile Men Referred to Royan Institute

Background: Epigenetic modifications are involved in different cellular processes through regulating chromatin dynamics. histone methylation is an important modification that can be dynamically regulated by histone methyltransferase and histone demethylase enzymes. JMJD1A (also known as JHDM2A and KDM3A) is a histone demethylase specific for H3K9me2/me1. JMJD1A is a key epigenetic regulator tha...

متن کامل

Epigenetic regulation in drug addiction.

The interaction between environmental signals and genes has now taken on a clear molecular form as demonstrated by stable changes in chromatin structure. These changes occur through activation or repression of specific gene programmes by a combination of chromatin remodelling, activation and enzymatic modification of DNA and histones as well as nucleosomal subunit exchange. Recent research inve...

متن کامل

Inhibition of Histone H3K9 Methylation by BIX-01294 Promotes Stress-Induced Microspore Totipotency and Enhances Embryogenesis Initiation

Microspore embryogenesis is a process of cell reprogramming, totipotency acquisition and embryogenesis initiation, induced in vitro by stress treatments and widely used in plant breeding for rapid production of doubled-haploids, but its regulating mechanisms are still largely unknown. Increasing evidence has revealed epigenetic reprogramming during microspore embryogenesis, through DNA methylat...

متن کامل

P 110: Evaluating the Role of Histone Hyper Acetylation in Induction of Neuroinflammation

Microglia is the effector cell of the innate immune system in central nervous system (CNS). These cells mediate inflammatory responses in injuries. Besides external factors, microglial function is also controlled by internal factors, including epigenetic regulations. Mechanisms of epigenetic regulation mainly consist of DNA methylation, histone modifications and use of non-coding RNAs. Recent s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 71  شماره 

صفحات  -

تاریخ انتشار 2011